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PREFACE
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ag Project Director and Dr. Andrew Kish, Transportation Systems Center,
as tTechnical monitor.
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numerical evaluaticns presented in this report. Thanks‘are also due to
Dr. Andrew Kish TSC/DOT and Dr. R. Michael McCafferty FRA/DOT for reaaing
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EXECUTIVE SUMMARY

A uniform temperature increase, TO in the rails of a straight
welded track induces in the two rails, due to constrained thermal
expansions, an axial compressicon force

Nt = EA uTo

For example, for a track wifh 115 1b/yard rails, a temperature
increase of 3OOC (BMOF) induces in the rails an axial compression force
of 96 metric tonnes.

For sufficiently large compression forces the track may buckle out.
According to observations in the field and in track buckling tests
(Fig. 1), continuously welded tracks buckle usually in the lateral
plane. The observed buckling mode of a long straight track consists
of a buckled region which exhibits large lateral deformations and the
adjoining track vegions which appear to deform only axially.

Analyses for the determination of railroad track buckling, caused
by a raise in temperature, have been conducted in the past several
decades by many investigators throughout the World. A critical survey
of these énalysés, and of the related test results, were récently pre=
sentéd by A.D. Kerr (Reference [1]). This survey revealed that the
majority of the published analyses are not suitable for the determina-
tion of the thermai track buckling problem, because they are based on

formulations which do not describe correctly the track buckling pheno=

menon. Those few analyses which are conceptually on the right path



exhibit analytical shortcomings with an unknown effect on the final
results.

The purpcose of this report is to present a mechanically reascnable
and mathematically consistent analysis for the thermal buckling of
tracks in the lateral plane.

The presented analyses are valid for tracks which use cut-spike
fasteners with a negligible rotational resistance; thus, for the major-
ity of railrcad tracks in the USA.

The "safe temperature increase" above the neutral (i.e. install-
ation) temperature i1s defined as follows:

The track analysis yields equilibrium

o)

branches of the type shown in figure.
From this figure (and an additional

stability analysis), it follows

that for a temperature increase T@

smaller than TL there exists only

Temperature increase, T

onie stable eguilibrium state, namely
the straight one. However, for TO

larger than TL, there exist three

eQuilibrium states. Thus, for TO
larger than Tp, also deformed (i.e.
buckled) states of equilibrium do
exist. Therefore the range of safe température increases is
O0<T <17
o L

Namely,; the anticipated rail temperature increase above neutral

should be smaller than the value TL for a track under consideration.

vi



Unce TL is determined analytically, the installation temperature
of the rails may be determined as
Tinstal 2 Thax ~ 7L
where Tmax is the highest anticipated rail temperature in a particular
geographical region.

The analytical part of this paper is devoted to the determination
of the eguilibrium branches for heated tracks, and of the corresponding
TL values. Since the majority of engineers will not be familiar with
the presented analyses, the obtained results are beiﬁg numerically eval-
uated for a variety of tréck parameters. Tﬁe results of this parametric

study will be presented as graphs in a manuwal-type report which is cur-

rently in preparation under contract DOT-TSC-11hk9,

vii/viil
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1. INTRODUCTION

Analyses for the determination of railroad track buckling, caused
by a raise in temperature. were conducted in the past several decades
by many investigators. These analyses may be grouped into two main
categories: when track buckles vertically and when track buckles in
the lateral plane. Although actual track buckling may proceed in a
more complicated manner, the choice of these two special modes of
deformation was apparently made in order to simplify the resulting
analyses. These specialized analyses were also suggestéd by observa-
tions made on buckled tracks. Namely, according to field and test
observations, cross-tie tracks when subjected to an excessive tempera-

ture increase, usually buckle in the lateral plane as shown in Fig. 1.

On the other hand when lateral motion is prevented, by an increased
lateral rigidity and/or an increased lateral resistance, the

track will buckle out in the vertical plane.

A critical swrvey of the analyses of thermal track buckling in the

lateral plane, and a description and discussion of related test results,

were recently presented by A. D. Kerr [l]f' This survey revealed that
the majority of the published results are not suitable for analyzing
thermal track buckling problems, because they are based on formulations

which do hpt describe correctly the physical phenomenon under considera-

tion. These few analyses which are conceptually on the right path,

exhibit analytical shortcomings with an unknown effect on the final results.

The purpose of the present paper is to present a mechanically

reasonable and mathematically consistent analysis for the title problem.

The obtained results are then compared with the relevant results published

by other investigators.

¥Numbers in brackets are reference numbers.



FIG. 1. BUCKLED TRACKS



2. THE THERMAL TRACK BUCKLING PHENCMENON

A uniform temperature increase, To’ in a straight welded track
induces in the two rails, due to constrained thermal expansions, an

axial compression force {Fig. 2a)

Nt = EAQTO

In the above eguation, which is valid when the rails respond elastically,

E is Young's modulus, A is the cross-sectional area of the two rails, and

o is the ccefficient of linear thermal expansion. Thus, for a track with
115 1b/vard rails (E = 2.1 x 10° kg/em?, A = 145 em?, o = 1.05 x 10 ° 1/C°),
a uniform temperature increase of 30°C (54°F) induces in the rails an axial
compression force of 96 tons {(metric).

For sufficiently large compression forces the tracks may buckle out.
According to observations in the field and in track buckling tests [1], the
continuously welded tracks presently in use buckle in the horizontal plane,
as shown in Fig. 1. The observed buckling mode of a long straight track con-
sists of a buckled region (of length 27 in Fig. 2) which exhibits large latcral
deformations and the adjotning regions which appear to deform only axially.

Tn the buckled region, a part of the constrained thermal expansions
is released. This results in a reduction of the axial force to Et’ which
in the literatﬁre is assumed to be constant. In the adjoining regions,
because of ballast resistance to axial displacements of the tracks, the

i

constrained thermal expansions vary; so does the axial force Nt £ N x Nt’
as shown schematically in Fig. 2(b). According to the above observa-

tions, thermal buckling of a long straight frack appears to be a local

rhenocmenon .
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3. ANALYTICAL PRELIMINARIES

In the following analysis, the rail-tie structure is replaced by
an equivalent beam of uniform cross-section, to be referred to as the
track-beam, which is symmetrical with respect to the vertical x-z plane.
The x-axis is placed through the centroid of the cross-section and is
chosen as the reference axis.

It is assumed that the beam is subjected to a wniform temperature
change *®

T {x,y,z) = To = cecnst {(3.1)

and a uniformly distributed weight q per unit length of track axis.
This weight consists of the unit weight of two rails and the averaged
weight of the cross-ties and fasteners per unit length of track.

To simplify the analysis, it is assumed that the vertical deflec-

tions of the rail-tie structure, pfior and during buckling, are negli-

gible. Thus, denoting by w(x) the deflecticns in the vertical plane, it

follows that
R = wix) 2 0 (3.2)

This assumption was made by all investigators of lateral track buck-
ling reviewed in [1].

The lateral resistunce exerted by the ballast on the rail-tie
structure (due to laleral displacements) consists of the friction
forces between the boltom surface and the two long sides of . .the ties
and the ballast, as well as the pressure the ballast exerts against

Lte front surface of the ties, as shown in Fig. 3(a). For the follow-

3
In a track, this change is measured from the installation temperature,

(in the literature often called the "neutral" temperature) at which the
axial forces in the rails are zero.
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ing analysis it is assumed that the resulting lateral resistance is

p{x) (per unit length of track axis). This resistance acts at a distance e
below the reference axis. However, because of the assumption that

prior and during buckling the track deforms only in its plane, thus

w(x) = 0, the eccentricity el has no effect on the determined post-
buckling response.

Tests, in which track sections were displaced laterally, revealed
that the corresponding resistance vs. displacement graph is non-linear
[2], as indicated in Fig. 3{a). However, as shown recently by A. D.

Kerr [3],the simplifying assumption

p(x) = p_ = const. (3.3)
may be sufficient for the determination of the sgfe temperature increase
This finding will be utilized in the following analysis.

The axial resistance exerted by the ballast on the rail-tie struc-
ture (due to axial displacements) consists of the resistance between
the ballast and the bottom surface of the ties and the pressure on the
vertical tie surface exerted by the ballast in the cribs, as showﬂ in
Fig. 3(b). In the following analysis it is assumed that the resulting
axial resistance is r{x) (per unit length of track axis) and that it

acts 2t a distance e, below the reference axis. Because of the assump-

2
tion that w(x) = 0, alsc for this case the eg—value has no effect on
the determined post-buckling response. 1In this connection note the
corresponding derivations presented in Ref. [L].

Tests, in which track sections were displaced axially, revealed

that the corresponding resistance vs. displacement graph is non-linear

(2], as shown in Fig.3 (b). Following the practice of a number of



track buckling investigators (whose results will be compared in
Secticn V with those cbtained in the present paper), in the following

analysis it is assumed that the resistance in the adjoining regions is

r(x) = r = const. {3.4)

and that it is negigibly small in the buckled zone. This second
assumption, which simplifies the solution,.was made in all track buck-
ling analyses reviewed in [1]. It may be partly justified by the
observation made in the field that lateral buckling is often initiated
by a slight lift-off of the rail-tie structure {for example in front
or rear éf a wheel set) which eliminates the friction force between
the ballast and the bottom surface of the ties.

Furthermore, it is assumed that prior and during buckling the
response of ihe rail-tie structure is elastic.

The buckling analysis of a railroad track subjected to thermal
compression forces consists of twe parts: (1) the determination of
all equilibrium states and (2) the inspection, which of the determined
equilibrium states are stable and which are not. From the nature of
the pest-buckling equilibrium brancﬁes and their stability, estab-
lished in Refs, [5] it follows that the range of "safe" temperature
increase to prevent track buckling méy be determined solely from the
post-buckling equilibrium branches. This concept is adopted in the
following analysis.

To insure a formulation that is cénsistent, mechanically and math-

ematically, the equilibrium eguations for the track-beam are derived



by utilizing the nonlinear theory of elasticity and the principle of
virtual displacements. To aveoid the difficulties encountered by other
investigators (to be discussed in Secticn V) when matching track regions
which are governed by different differential equations and whose matching
points are not fixed a priori along the track axis, use is made of vari-
ational calculus for variable matching points [6].

With the notation of Ref. [7] Chapter III , the principle of wvir-

tual displacements may be stated as

8U -fffﬁ*-sﬁ av -fff*-sa ag = 0 (3.5)

v Sl

where

N .
= —ﬁfo* e +to* ¢ +g¥ ¢ +g¥ ¢ +g¥ ¢ +o¥* )d {3.6)
2 XX XX YV ¥V 2% Z2Z XY Xy XZ XZ YZ yz
v

is the elastic strain energy of the track-beam, V is its volume in the
undeformed state, u is the displacement vector, o?, are generalized
stresses, Eij are Langrangian strains, F¥ is the body force of the
track-beann, and f* is the tracticn force which acts on part Sl of the
track-beam surface 5.

The coordinate system used and the positicn of the track—beém,

before and after deformation, are shown in Fig. 4. Note that (x,y,z)

are Lagrange coordinates, (u,v,w) are the components of the displace-

ment vector u of point (x,y,z), and ( ) are variables which refer to

the reference axis x.



With the usual assumptions of the bending theory of beams (such
as the plane section hypothesis*, etc.) the expression for U reduces

to

U = l[-EA(E - aT ')2+ EI\?”Q dx (3.7)
‘ 2 XX 0 ’

where A is the cross-sectional area of the track-beam, I is its moment
of inertia with respect to the vertical z-axis, of  is the thermal strain.

~

= ' + G2 (3.8)

XX

n -

and ( )' = d( )/dx. The derivation of the above relations (which also

includes the order of magnitude estimates of the retained and neglected
L

nonlinear terms) is identical to the one presented in Ref. [U4], except

that w and v are to be interchanged.

* Tt should be.noted that the plane section hypothesis, although
utilized by track investigators, is not satisfied for the lateral
deformation of many tracks. However, because the cut-spike rail-tie
fastener, currently used by U.S. railroads, exhibits only a very
small rotaticnal resistance, it appears justified to assume that
for such tracks this hypothesis is valid for each rail and that the
lateral bending rigidity of the track is the sum of the bending
rigidities of the two rails with respect to their wvertical axes;
thus I=21r. A thorough re-examination of the effect of the fastener
rigidity on the lateral track response, will be coéntained in a

forthecoming report.
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Y. ANALYSES OF TRACK BUCKLING

Because of assumption (3.4), which states that the axial track
resistance is constant, it follows that in the adjoining track regions
the axial track force varies linearly, as indicated by the dashed line
in Fig. 2(b). Therefore the length of these regions, which exhibit
‘only axial displacemnts, is finite; namely & = Nt - ﬁt]/ro. According

to this scheme, beyond 2(l+a) the track does not deform due to buckling,

which agrees with observations in the field.

Ax
~
(" S ————
{ (Ptj-—“~r—_"4 S

O 1 e o a1 i < e e e
undeforined state

FIG. 4. NOTATION AND CONVENTION USED IN ANALYSIS
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As shown in Fig. 1, the lateral buckling modes of a track tend to
be symmetrical or antisymmetrical. Since the lateral resistance Py
is always opposite to the direction of v(x), it follows that the sim-
plest analysis for each of these modes is obtained when the lateral
displacements are assumed to be of form I or II, respectively, as
shown in Fig. 5.

In an actual track, the lateral displacements are not zeroc beyond
L = Zl. To study the effect this constraint has on the analytical
results, it will be relaxed by allowing the formation of additional
half waves beyond Zl = 7. This results in shapes III and IV shown in
Fig. 5.  The necessary analyses are more complicated, since more domains
governed by different differential equations have to be matched.

In the following, the post-buckling equilibrium states of the track-
beam are determined for the deformation patterns I to IV, shown in Fig. 5.
The obtained results are compared first with each other, in order to deter-
mine the effect of the constraints on the lateral displacements made in

shapes I and IT. They are then compared with the corresponding results

of A. Martinet [R], K. N. Mishchenko [ 9 }, and M. Numata [10].

4.1 ANALYSTS FOR SYMMETRICAT, DEFORMATION SHAPE I

L.r.1 Formulation of Problem

For this analysis the track consists of five regions: the later-
ally buckled zone of length 21, two adjoining regions each of length a
for which v(x) = 0, and the twe infinite regions in |x| > Zo which are
not affected by buckling. but which are subjected to the axial com-

pression force N, = EAaTO.

t

12
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Because of the assumed symmetry of the buckled zone, eq. (3.5)

may be written as follows:

A 1, o
63/Fldx+ fFadx+ medx+ Av (1) + avi(l)y =0 (4.1)
o L A
(o]
where
1 . 2 g3 | - nix-l)rw + oV
FLo=3 EA(el—aTo) + EIv) X o™ 0’1
A 2 a2 S A% (h.2)"
Fa - %‘[EA(Ea-GTO) + EIv; ] - q(x-l)roua eV, Klva
F =% EA(E —al )5+ EIv”gl] - nlx=I)ru +po v
a0 2 o0 00 T] oo 0 w
and
" = Ty L "'2 = w
En un + > Vn n 1, a,

o
7 = i — o1 - =
va(x) = 0 — va(x) Va(x) 0
- | (h.3')
ua(lo) =0
and in ZO <X < w !
Gm(x) =0
; (h.3")
u_(x) =0 (Kote that N_ = EAeT_ # ©)

The subscript 1 refers to the buckled region, the subscript a to the
adjoining regions, and the subscript = tc the x ;:ZO region. n(x-1) is
the unit step function attached to the axial resistance T, Note that
r # 0 only when u # 0 and that oy # 0 only when v # 0.

The variational equation (L4.l) contains three Lagrange multipliers.

They enter because of the assumed constraint Ga(x) 0 for L < x £ Zo'

Since r, and py are assumed npot to be functions of the respective dis-
placements , their direction has to be prescribed as opposite to the
corresponding @mticipated displacements.
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The multiplier Xl is the lateral reaction pressurce which may occur in
1< i < ZO. The mult;plier Ag is the anticipated concentrated lateral
reaction force at the points x = 7, which usually occurs because of
the use of the beam bending theory and the stipulation Ga(x) = 0% The
multiplier A3 is a concentrated reaction moment which may occcur at

x =17, (If it does not occur, the analysis will yield AB = 0.)

Since x = 7 and x = Zo are variable matching points, eq. (4.1)

becomes, according to [6],
7 1, w
Gf Foax + s f T dx + f T dx + [Fl— Fa] 81
7
o] Z ZO
3

+ [Fa-Fw]Z 81, + xgsGa(Z) + A 60&(1) =0 (h.h)
(o]

Performing the variations, then integrating by parts, and group-

ing terms containing the same variation, eg. (4.L) becomes**

)
J/" ;(EIV{)"-[EA(el-aTO)vi]'+p0 févl- E[EA(el-aTo)],+q(x—Z)rof Sul dx
o
J,ﬂ (EIV") [ (ea—aTo)vé]'+po—llf Gva- ’[EA(€a~aTO)]'+n(x—Z)ro }5ua dx
Z -

.}r ;(HIV")' [ (e -T )v;]1+pos Sv_ - ;[EA(E -aT )]'+q(x—l)rc§ 6u%]dx

" - 1 - 11 '_ -
EIv +EA(51 aTo)vl]ﬁvl I%IV1]6v1 [EA(el uTO)]Gul} e +

¥ Note that the corresponding conegentrated axial resistance was not

included because the necessary "frietion" coefficient is not known and
because its effect is not expected to be essential. In this coennectlon note

the related results for Shape TIT.

¥% Sinece in (4.4) 211 variables refer to the reference axis., in the following
the (") symbol is dropped to simplify the presentation. ’
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. { [_(EIVE) oy El_aTo)_vi]le_[_(Elv;) 4EA(e_—oT_)v!- 2]6va

+ [EIV‘;] Svi-— [EIv;-A 3] 5v;+ [EA( t—:l-ozTo )] 6u-l- [EA( ea-aTo )]‘ Gua+ [Fl-Fa].ﬁ A } -

a

1] !
+ { [—(EIV;;) +EA(ea—aTO)vé]6v -[_(Ezv;) +EA( em-aTo)vu'D]va
+[EIv”:|cSv'-I—EIV”-IGV'+[EA(E -aT )]6u -[EA(e -aT )]Bu +[F -F ]az }
a a ] = a o} a © o} o a o 0

x:m-

N { [—(EIV:,) vBA(e o1 )v;] §v_+ [EIV;] §v '+ [EA( e a1 )] su_ } -5

(4.5)
From the above equation it follows that the differential equations
for the track are:

In the buckled region, 0 < x < [, noting that in this domain n(x-%Z) = 0,

" 1

(EIVE) - [BA(e. =T )v'] = —p

1 o 1 o]

(L.6)
[EA(EI-GTQ)] =0

and in the adjoining region, I < x éllo, noting that in this domain

ni{x-7) = 1, va(x) = 0 and hence also p_ = 0,

AT 0
’ (4.7)
[EA(E -uTO)1 =-r0
where
fp Ut %-vﬂe n=1,a
In regicn ZO < x <=, as stated in (4.3}, u (x) = 0, v _(x) = 0, and N, =

From eq. (4.5) it alsc follows that the boundary conditions at

X=0 are

16



(L.8)

o
]
[
I
o

[—(Elvi)']o -0

Because of the constraint conditions vm(x) = 0 and um(x) £ 0, the bourndary

term at x = ® in eq. (4.5) vanishes.

The matching conditions at x = [ and x = ZO are cbtained
from the remaining terms in (L.5); namely the boundary brackets at x = 1

and x = 10. Because of the gecmetric continuity conditions

v (1) = v (1)
vi(2) = V(D) (.9)
ul(l) = ua(l)

it follows that at x = [

Svl(l) = &v (7) ; Bvi(Z) = &v'"{Z1) 5 Su (Z) = 8u 1)

Similarly, at x = 7 ,
= . ' = ' . =
6va(lo) = évm(lo) : 6va(lo) GVW(Z ) ﬁua(l ) 6uw(Z )
Thus, the remaining terms in (4.5) may be written as
! " ! )
[-(e1vy) "+ma(e oz Dy # (B1v]) -EA(e =T )y ) | ov,
+ [EIVE—EIV;+A3]6vi+[FA(El-uTO)-EA(Ea—aTO)] Su * [Fl-Fa]ﬁz.} 7
A=1

1 L
_ n - 1 1 - -aT 1§
+ {[ (ETv)) +EA(e -aT v +(EIv]) -EA(e -a o)Vm] v,

"_ 1" ' - - - +|r -F |81 =0
+ [Elva EIvm]éva+[EA(ea ol )-EA(e, aTO)]Sua [ a m] 0 }

17



However, in the above eguation ﬁvl(l), Gvi(l), etc. are not the varia-
ticns of the variable end point 7, as shown for vl in Fig. 6. Accord-

ing to Fig. 6, for the general case (needéd because the constraint con-

ditions were taken into consideration by means of Lagrange multipliers)

le(l) = 6Vlz - Vi(Z)éZ 3 Sva(lo) = Gvao - v;(ZO)SZO

and similarly
- fl . ' - 1 qptt
Gvi(l) = 5Vlz Vl(Z)BZ 3 Gva(lo) = ﬁvao va(lo)ﬁlo
! = - 1 - = -

Sul(l) su, ul(Z)ﬁl ; Sua(lo) su, u;(lo)6zo

With these relationships, eq. (L.5') becomes
v 1
[-(EIVE) +EA(€l-aT0)vi+(EIv;) -EA(sa-aTO)v;+A2 Zévlz

" " : J
+[EIV1-EIva+13]Zév +[EA(el-aTo)—EA(ea—aTo)J Gulz

7
1 1

P i

1
EI 'l + - ] 11 - - 1 ]
[ V) EA(El uTO)vl+(EIva) EA(Ea aTo)va+A2]vl
+ " "y , _ _ _ v _
[EIV -EIv )\3] [FA(el aT )-EA(e, aTO)]ul [Fl Fa” Y
A

1
+{ (EIV” +EA(€ —aT Wi+(EIv") =EA(e =aT )v'] sv
a2 @ o= o] Lad a0
Lo
+[E ”-EIv"] Sv! +[EA(e -aT )-EA{e -aT )] Su
a a o]

0 @ o a0
O ZD

Pt

1
[ (21v!) +EA(a ~oT v +(EIv]) 'EA(em'uTo)V;]V;

+[EIV”-EIV"]V”+[EA(€ -aT )J-EA{e -aT )]u'-—[F —F]
a ®) a a (o] o o] a a o«

510 = O (h.SH)
o
In the above equation, all variations are independent. Thus, in

addition to the geometrical matching conditions (4.9) subject to the

constraint conditicns in (4 3), whieh reduce to

18



dull) = Svﬂ - (8L

FIG. 6. RELATIONS AT THE VARIABLE MATCHING POINT x=1

Nt R
—_——— q_;- —_—r — 3~ —— - e o
ro = const
4 J a |
b ..
la |

FIG. 7. MECHANICAL INTERPRETATION OF A DERIVED CONDITION
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1
Vi(l) =0 (L.o")
u, (2) = u,(7)
also the following conditions have to be satisfied at x = 1
u(2) = wl(i)
" - _
EIvl(Z) 13
(L.10)
1]
It -
-[(Elvl) ] = —A2
A
VE(Z) =9 (transversality condition)
and at x = ZO, noting {(L.3"),
ua(lo) =0
(4.11)
ué(lo) =0 (transversality condition)

For a physical interpretation of the cbtained boundary and match-
ing conditions, it should be noted that the axial force, bending moment,
and shearing force in the lateral plane of the track-beam are expressed

respectively as:

Nn(x) =’EA(€D - aTD) R N>C compression
M (x) = -EIv" n=l,a (L.12)
n n :
= - " ! - 1
Vn(x) (EIvn) + EA(En aTo)vn

Because of the first transversality condition, V;(Z) = 0, it
- follows from the second equation in (L4.10) that

A. =0 (4.13)
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Thus, a concentrated reaction moment AB does not exist at point x = 7.
From the third equation in (4.11) it may be concluded, noting that
vi(l) = 0, that at x = I there acts a concentrated reaction force of

magnitude
), = [(Exvp']l (4.1k)

This reaction force occurs because of the use of the bending theory for
the track-beam and the constraint condition va(x) = 0. It represents
a concentration of the contact pressure in the close vicinity of

X Z.

1KY

From the above derivations it follows that the equilibrium for-
mulation of the track in the lateral plane consists of the nonlinear
differential equations in (4.6) and (4.7), the three boundary condi-
tions (4.8} at x = 0, the two conditions (4.11) at x = ZO, and the
five conditions at x = I, consisting of the three matching conditions

in {4.9') and the two conditions from (4.10)

' (Z) = u'(1)
* “ {4.10")

<
Py
)
g
1l

0 (transversality condition)

Thus., 10 ccnditions for the determination of the 8B integration

constants and the 2 unknown lengths, I and ZO.

4.1.2. Solution of Formulation for Shape I

The differential equations in (b&.6) and (4.7) are nonlinear.

However, since the second equation in {L.6) when integrated yields

EA(el—qTo) = const =-ﬁ£ 0 xx <l {L.15)
the first equation in (L.6) reduces, for EI = const, to
iv -~ "o
EIv,” + N.vi = —p_ 0<x =<1 _ (L.16)

a linear ordinary differential equation with constant cocefficients.
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This analytical feature makes it possible to solve the derived nonlinear
formulation for the lateral buckling of the failroad track exactly and
in closed form. It was utilized in [4] for the solution of the vertical
track buckling problem.

For the track beam, the coefficient EI is constant, since in a
railroad track the parameters of the ralil-tie structure (such as the
rail and tie characteristics, the gauge, the tie spacing, and the fas-
tener type) usually do not vary.

According to (4.12), the left-hand side of eq. (4.15) is the axial
force in the buckled region. It was denoted by—ﬁ;. Thus, the axial

~

compression force in the buckled region is <+Nt) and is constant.

The general solution of eg. {L4.1l€) is

5
v.{x) = A.cos Ax + A _sin Ax + Ax + A, - 2— x2 (h.17)
1 1 2 3 4 2
27
where
ﬁt po
= —_— - * = _2Z v
A i ; p = (L.17')
I~

Since for the considered problem N, > 0, it follows that A is a real

t

number. From the second and third conditicns in (Lk.8) it fcllows that

A2 = A3 = 0. The constants Aland.Ah are obtained using the first two

conditions in (4k.9'). The resulting v. is

1
* 4 N ‘ :
v, (x) = p" L [l _x% _ 2(cos Ax-cos AL) ] (4.18)
2(A1)? 22 Alsin A1

The length [ is as yet an unknown quantity. It is obtained from
the transversality condition in (4.10). Substituting (4.18) into this

equation, it follows that it is satisfied when

tg AL = AL . (4.19)

22



The roots ¢of this eguation are

AL =0, biboz, oo s e (4.19")
The first root corresponds to the trivial case. It may be shown that
the second root corresponds to the symmetric deflection shape I, shown

) ) %
in Fig. 5. This root will be used in the following.

Tt should be noted that the vl(x) expression in (4.18), with

~

AL = L4.L93, contains still one unknown; namely the axial force Nt'
For its determination we use the remaining equations of the above
formulation (namely those in terms of u). They are: the second equa-

tion in (4.6) and (L4.7), which are nonlinear, and the corresponding

voundary conditions in (L4.8), (4.9'), (4.10) and (L4.11).

Since for the track-beam EA = const and va(x) z 0, the second
equation in (4.7) reduces 4o the linear equation

EAu" =-r 1 <x =<1 {L.20)
a 0 =" =

Its general solution is

Yo\ 2
ua(x) ——(-——) 5+ le + B2

Using the first condition in (L.11), ua(ZO) = 0, we obtain

rozoz
B, = [ oEA Blzo]
Thus

ua(x) =*§%K'(x2—lg) + Bl(x—lo) (4,213

Instead of the second equation in (4.6) we utilize its first inte-
gral given in (4.15); namely the nonlinear differential equation of the

first order

1A

1,2 ~
BA (ui " E—Vi _ aTo) =-—Nt 0 X £ l (4.15)

Because of (4.17'), the expression Al = L.493 may also be written as
B = 20.19 I/12. TNote that in a number of references 7 = &L/2. Ience
Ny = 80.7 BI/22. '
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Since, at this point of the analysis, vl(x) is a known function and is

given in (4.18), the above equation reduces to & linear differential

equation. Rewriting eq. (4.15) as

N - ,
ul(x) = .(aTO - ﬁ) X - %f \(iz(x)dx (4.23)

N .
The three unknowns in (4.21) and (4.23) Bl’ Zo’ Nt are determined
in the following from the remaining two matching conditions at I and
the one at ZO.

. Substituting expressicns (L.21) and (L4.22) into the matching con-

dition u'(l) = u;(l) and noting that according to (4.9') vi(Z) = 0, we

1
obtain ~
' Nt rol |
B = (aTO - = t o (h.2k)
Thus ~
rs Nt
u (x) = [-EEA- (x+a-1) - ol - ﬁ)] (Zo-x) (k.25)

Substituting the u expressicns from (4.23) and (L.25) into the

matching condition ul(l) = ua(Z), we obtain
ﬁt l Z roa2
- = 12 = —
(ouro - ﬁ) (1+a) 2fvl (x)ax = 5= (L.26)
0]

Evaluaticn of the integral term, noting (4.18) and (4.19), yields

*
f vy *()ax =%‘<§‘2‘Z') = 20.45 x 107%p*277 (L.27)
o]
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With this expression eq. (L.26) becomes

N o I\2 r (1 -1)2
t 5Z(O>+°° - (4.28)

of =3 * o7 \X Z2EAL
0 t &

Substituting the ua(x) expression given in (%.25) into the

transversality condition in (L.11), ué(lo) = 0, we obtain
N A (4.29)
(EA.aTO - Nt) =T, ( 0" .29

Since EA&TO = Ny 1s the axial compresaion force in the undeformed track-

beam, eq. (1.29) may alsc be written as

(5, =) = ol (h.291)

Thus, the transversality condition at x = ZO yields the equilibrium
equation of the adjoining region in the axial direction, as shown in
Fig. 7.
The exact solution is thus obtained. The displacements at egui-
~librium are given as follows: vl(x) by (L4.13), ul(x) by (L.23)
‘ ~
v (x) = 0, and ua(x) by (4.25). The relationship between T and N
a
is given in (4.28), noting that according to (4.19') Al = L.4O3 for
the symmetrical mode I, that ZO is determined from (4.29), and that
A2 = W_/(ET).
t
To simplify the numerical evaluation it should be noted that in
eq. (4.26) the unknown a = (ZO-Z) may be eliminated by utilizing eq.
{(4.29). The resulting eguation is

[A
o~ 2 AL
(Nt-Nt) +?Zro(Nt_Nt)-EAroJ{’v

o]

|2(

] x)dx = 0 (L.30)

where Nt = EA@TO. Solving this quadratic equation we obtain
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L

— r

l
o~ EA 2
EAGTO = Nt + Zro -1 ,+4 1+ zg—;?jr V] dx j (4.31)
' !

For a given track (thus, for known values of E, A, T, a, T po)
the numerical evaluation of the obtained solution consists of the fol-
lowing steps: Choose a positive value for Et and determine the corres-
ponding value X = /fﬁé/féEY and 1 = 4.493/x. DMNext, obtain the corres-
ponding T_ velue from (4.31), noting (4.27). The corresponding dis-
placements are then given by {(4.18), (4.23) and (k.25).

The numerical evaluation was performed for a track‘with 115 1b/yard
rails on wooden cross-ties with cut-spike fasteners (of negligible

rotatienal resistance). The following parameters were used:

A = b5 em@ (11,25 in?) I =27 =899 cn (21.6 in")
E = 2.1x10% kg/em? (3x10710/in?) o = 1.05x1075 1/¢°
o, = 600 kg/m (402 1b/ft) r_ = 1000 kg/m (670.8 1b/ft)

The corresponding graphs are shown in Fig. 8 (as dashed lines), noting
that for shape I v . = v(0). The obtained graphs are of the same type

as the ones cbtained for the much simpler track model analyzed in Ref. [5]
(Fig. 11).

According to Fig. 8, for the used track parameters the safe tempera-
ture increase is T, = 43.7°C. Note that Ffor any uniform temperature
increase TO > TL there correspond three states of eguilibrium: The
(stable) straight state, the (unstable) equilibrium state on branch AL
and the (stable) equilibrium state on branch LB. Thus, when the track
buckles at a temperature increase TO > TL it will go over to the cor-

responding laterally deformed equilibrium configuration on branch LB.

26



80

O
G
£ eor!
2
o T
0 ks
S
S 40
- —— — — — Shape |
8 1"
E T - L1 ]i
G ———— i
a 20} ——————— N Y
£ ‘ i
12 .
= .
0 : l ! ] 1 i
0 20 40 60 g0 100
2oorn |
I 15 la/yurd rail
Py= 600 Lg/m
re 2 1000 kg/in
160
w
c
2
£
. 120
iz
=
2
o
y
- 80
L
=
(&
3
L
R=
8 40
£
© .
g Vinax I €M
L4 ') ] | ] I ’
0 20 40 GO 80 100

FIG. 8. COMPARISON OF POST-BUCKLING EQUILIBRIUM BRANCHZS AND THE
CORRESPCNDING AXIAL FORCES ﬁ;, FOR SHAPES I TC IV

a7



In this connection note the large drop of the axial force due to buck-

ling and the corresponding values for a and 7 shown in Table 1.

TABLE 1. CALCULATED TRACK DATA - SHAPE T

l : g e -
Temperature Axial force Axial force N, -N
| . . . . , t°t l
increase in straight state in Euckled region a = - in meters
T in °C N, = EAaT 4n tons N, in toms, o
o t o t .
in meters
ST = b3l 139.7 90.0 h9.1 6.5
tT = 50.0 160.0 62.8 97.2 7.8

L.2 ANALYSIS FOR ANTISYMMETRICAL DEFORMATION SHAPE II

4.,2.1 Formulation of Problem

The general form of the deformation shape II is shown in Fig. 5.

Also for its analysis the track consists of five regions, as for shape I.

Because of the antisymmetry of shape IT, it is sufficient to consider

only the part for x > 0. The formulation is therefore identical to

the one for shape I, except for the boundary conditions at x = 0.
Thus, the differential equations for the track are given, as

vefore, by (4.6) and (4.7). From eq. (4.5) it follows that the boundary

conditicns at x = 0 are:

v,(0) =0 : v'(0) = 0 ; u (0) =0 (4.32)

The conditions at x = 7 and x = Zo are the same as before. Namely

v.(1) = 0 | v (1)

1 1 =0
. (L.9")
ul(l) = ua(l) ui(l) = ué(l) and
(4.10")

vI'"(Z) = 0 (transversality condition)
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and

&0 . (u.nj

(transversality condition)

o
o~
L

1}

(@]

L.2,2 Solution of Formulation for Shape TII

v

Because the differential equations are the same as for shape I, it

follows that the general solutions are the same. Namely:

_ . p¥ 2
Vl(x) = Alcos Ax + A251n ax o+ A3x + Ah - 3T X (4.17)
ﬁt 1 1 ' ()—L )
= - - - ' .23
ul(x) aTO T 2efvl(x)dx
o
va(x) =0
I'O :
= - —— (x2.7 2V + -
u, (x) zEs (X% * Bylx-l ) (h.21)
The integration constants Al to Ah are determined from the
first two conditions in (4.32) and in (L.9').
They are:
PO ki o = 0 (1-cosAl) + (A)?/2 - Mlsindl
1 A 2 AF AlcosAil - sin)l
_ {L.33)
L = p* (l-cosAl) + (AZ/2 cosAl - sindl)Al . A= o*
37 A% Mcosal - sinAl » Sy TR
Substituting the obtained vl(x) intc the transversality condition,
VE(Z) = 0, it follows that it is satisfied when
2(1 = cos AL) = Al sin AL (14 .34)
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provided tg AL # AL. Thus, the roots of this equation are

AL = 27, 8.987, . . . (4.34")

It may be shown that the first root corresponds to the antisymmetrical
deformation shape II, shown in Fig. >.

With AZ = 27, the expressions for the ihtegration constants sim-

plify to
_ _ p¥it . - p*t
A1 167w ? AE T 16w
(4.33")
B p*23 ) L= D*Zu
Ay = G2 ; T
and v,{x) becomes

1
n

vl(x) = %%%r { l-cos (§%§)+ T sin ( 2%3) - 2n2 [(%)2- %]‘}

The above expression vl(x) contains still one unknown; namely the

nt
axial force Nt' For its determination we utilize the equations

for u(x) of the above formulation. Since they are the same as

those used in the analysis of shape I,the steps are also the same.

Therefore, the additional eguation needed for the determination of
~t
N i

¢, 18

i

A .
: ~
= - —— —— 12
EA&TO Nt + Zro { 1 +19/ 1 + 2r0 J{‘vl dx } (L.31)
. )

where vl(x) is given by (L4.35) and the corresponding integral is

7 |
J[.vizdx = 17.430 x 10 Sp*2717 (L.36)

o]

Also for chape II, the length of the adjoining region is
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a = (EAOLTO - Et)/ro (4.29)

The exact solution for the deformaticon shape IT is thus obtained.
It was numerically evaluated for the same track parameters as used
for shape I. The results are shown in Fig. 8, as golid lines. vmax

was calculated by first forming dvl/dx = 0 which yvielded x/1 = 0.346L

(x).

and then by substituting this value into v,
The obtained graphs are very similar to the corresponding graphs

of shape I. The drop of the axial force in the buckled region and the

corresponding a and 1 values, &t To ;:TL,are given in Table 2.

TABLE 2. CALCULATED TRACK DATA - SHAPE IT

S e

'

Temperature Axial force Axial force N, -N
. . . . . _ Tt % [2
increase in straight state in buckled region a = = in mete
T in °C N, = FAaT_ in tons N, in tons . ° rs
o p e} t in meters

T, = h2.0 135.3 89.0 ' h5.3 9.2

T = 50.0 160.0 58.0 102,0 11.

SRS ENU OO S -

*
4,3 ANALYSIS FOR SYMMETRICAL DEFORMATION SHAPE III

4.3,1 Pormulation of Problem

The general form of shape III is shown in Fig. 5. For the following

analysis the track consists of seven regions, since the buckled zone now

contains three regions {(instead of one).

*
The research for sections 4.3 and U.4 was supported by NSF Grant

ENGTE-1903C.They areincluded here for the sake of completeness of
presentation.
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Because of the assumed syﬁmetry of the buckled track, egq.

becomes

)dex+fFde+

where F

subject to the
Proceeding as for deformation shape I, noting that Zl, 7 and

ZO are variabtle end points,

15

o+

Fg» F, are given in (L.2),

2 n21 _ _
{ra(e —aTo) + EIV2 ] -n(x Z)rou

constraint conditicns (4.3') and {(4.3").

the following formulaticn results:

The nonlinear differentizl equations:

(EIVI)" _

where

[EA(el—aTO)vi]

[EA(El—uTO)]'

1]

_po
0
0
*+p
0
A
0
0
JA
-r
o
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1A

A
1~

(4.37)

(h.2v)

(L.38)

(4.39)

(4.10)



the constraint equations

v]’_(O) =0 ; v{'(O) =0 ;
vl(ll) = VE(Zl) v{(ll) = vg(Zl)
vi(2 ) = vA(L) vl )= v (1))
ul(Zl) = ug(ll) ui(ll) = Ué(ll)

vl(ll) =0 [thus, 5
VE(Z) =0 vé(l) =0
uz(l) = ua(Z) ué(l) = u;(l)
¥vi(1) =0
and
u'(z ) =0 ; uwi(Z)=0
a o] a (0]

also v {L.) = 0]

(L.41)

(L.k2)

(4.43)

(L .Lk)

(4.45)

Thus, 17 conditions for the determination of the 14 integration con-

stants and the 3  unknown lengths Zl,

4.3,2 Solution of Formulation for Shape IIT

7 and 1 .
o

Integrating once the second equation in (4.38) and in (4.39),

we may write

EA{El-aTO) = const. = —Ntl 0
-~
EA(EE—uTO) = const. = -l , Zl

I~

fla

=
A
o

»
IES
=

(L. 46E)



Noting the matching conditions for u' and v’ in (h.43) 1t follows that

~. :
N =N =N

1 (h.46")

Thus, for EI = const., the first equation in (L4.38) and in (4.39) reduce

to the linear differential equations with comnstant coefficients

v 4+ ¥ vt = 0<x <l
1 TN LT TP, =%z
iv ~ " ()4-.]4-7)
EIV2 + Nt v, = + G Zl <x <17
Their general solutions are
v, (x) = A cos Ax + A sin Ax + A.X + 4, - igi-xz
1 17" 2 3 L 752
(h.u8)
v, (x) = A cos Ax + A.sin Ax + A_x + A, + e¥ %2
2 5 6 7 8 o2

Using the 8 boundary and matching conditions for v in (L.L42),

(4.43) and (L4.44), the constants Al to A8 are obtained as:

Al 1) [y - cos All] ;3 A2 AB 0
- A )
Ah = EZXZSZ-{(AZIJ - 4[y - cos All] cos All}
'u' | 4 4 (h.49)
2o%1 20%] ) 2p¥]
AL = —— s Ay = =——sin Al, ; A, = - ——
5 (AZ)H ¥ & (AZ)H 1 i (AZ)SZ 1
_ 29*14 s . 9
A8 = 01 [~} cos Al-sin Al sin All + AZIAZ - (A1) /4]
Wwhere
P = EEH—XT {cos A sin AZl - AZl + Al/2)
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For the determination of Zl and 7 we utilize the twoc transver-

(2.) = 0 and ¥'(7) = ¢, and obtain

sality conditions Vol o

- oV )2/[200)4] = O

ASCOS AZl + A651n All + ATZl + A8

(4.50)

A5cos AL + A.sin AL - pEIM/(A1)% = 0

€

where A5 to A8 are given above. The lowest roots All and Al of the
two simultaneous algebraic equations in (4.50), which correspond to

the shape III shown in ?ig. 5, were found using a numerical trial and

error approach. They are

AZl = 2.92 : AL = T7.55 (4.s0")

Thus, for shape 111, Z/Zl = 2.6

For these rcots the integration constants Al to AS become
= -3 *L“ . = =
Al 1.20 x 10 ¥l ; A2 A3 0
), = 2.kg x 1073 p1" 5 Ag = 0.60 x 107% p¥1% (h.hor)
Ag = 0.1k x 1073 ozt : A =_1,36 x 1072 p*[3

Ag = L.50 x 1073 p*i*

The expressions for vl(x) and vg(x) contain still one unknown;
~d
namely the axial force Nt' This unknown is determined in the follow-

ing from the equations for u{x) of the above formulation, in a similar

manner as done for -shape T.

From the equations in (4.46) it follows, noting (4.4E'), that

~
I
ul'(x) = (otTO - E—z)— %vl'z(x) 0£x< 11
- (L4.51)
_ EY_ L a2
uglx) = (“To - EA) > vp () bpexsl
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Pl
Nt 1 2
= - — N — 1
ul(x) (G.To EA)X 2fV1 dx (L4.52)
o

Integrating the second equation in (4.51) from Zl to x we obtain

X

)(x - Zl) - %ljr vézdx (4.53)
1
1

The differentiasl equation for u s in (4.40), is the same

Eiﬂz:a

uy(x) = uy(ly) + (“To -

as the one in (L.7) for shape I. Also the corresponding boundary and

matching conditions are the same, as for shape I, except that ul(x) is
replaced by the adjeining uz(x). Thus, the solution of the second
equation in {4.40) subjected to the conditions ua(Zo) = 0 and ué(Z) = u'{l)
a
is, as béfore,
~
rD ’ Nt
=] = +a - - - == -
ua(x) San {(x +a-1) (aTO EA) (ZO x) (4.25)
From the matching condition ul(Zl) = ug(ll) we obtain
o~
W, L b
= - — - = 12
uE(Zl) (u‘I‘o EA)Zl 2f V) dx (4.54)
. o '

and from the matching condition u (1)

u (1) the relaticn

a
ﬁt 1 Zl 2 : 2 roa2
(aTo -ﬁ)(l+a)-§f v, fax +f véd_x T SEm (4.55)
o Zl

Tguation {L.55) is the additional equation needed for the determination
~ ‘
of N, . Substituting the ua(x) expression given above, into the condi-

tion ué(Z) = 0 we obtain, as before,
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~
(Nt - Nt) =r_ a (h,29")

where a = (1 - 1). Next, we eliminate the variable a from eq. (4.55)
O .

by using (4.29'). The resulting equation may be written as

l A _
1
4 ~
2 _ _ 12 12 =0 b .56
(Nt - Nt) + QZro(Nt Nt) EArO Jf v, Sdx +~/‘ vi%dx (L.56)
0 Zl
or, in solved form,
- 1
l A
I it FA 1 2 2 (4 )
EAaTO = Nt + Zro -1+ 1+ ero[Jr ! dx +.l. v dx .57
o Zl

The integral expressions which appear in {4.57) were evaluated, noting egs.

(L.48) and (4.49') and that according to (4.50'), Z/Zl = 2.6 . They are

L
1 .
J/. vifdx = 3.10 x 1072p%27 . 7
o]
(4.58)

vitdx = 6.32 x 107 %p*217

i
[ ™~

The solution for shape IIT is thus obtained. It was numerically
evaluated for the track parameters used before. The results are shown
in Fig. 5 as dash-dot-dash lines, noting that for the present case
v = v_(0}).
max l( )

The drop of the axial force in the buckled region and the corresg-

ponding values of a, Zl, and 7, at T =» TL, are given in Table 3.
o =
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TABLE 3. CALCULATED TRACK DATA - SHAPE III

T T ~

I Temperature Axial force Axial force Nt_Nt Zl 7
3 increase straight state buckled region a=
| T in °C | N, = EAaT_toms N, tons To | meters | meters
} o B t o t meters
i
} T = Lbi.e 131.8 88.8 4z.0 4.3 11.

T = 50.0 160.0 ‘ 56.5 103.5 5.3 13.

4.4 ANALYSIS FOR ANTISYMMETRICAL DEFORMATION SHEAPE IV

4. L.,1 Formulation of Problem

The general form of shape IV is shown in Fig. 5. For its analysis
the track consists of seven regions, as for shape III. Because of the
antisymmetry of shape IV, it is sufficient to consider only the part for
x 2. G. Therefore, the formulation for shape IV is identical to the
one derived for shape III; except for the boundary conditions at x = O.
These three boundary conditions are those of shaﬁe.II and are stated

in eg. (k.32).

4.,4.2 Solution of Formulation for Shape IV

Because the differential equations are the same as for shape III,

it follows that the general solutions are also the same. Namely

vl(x) = A cos Ax + Assin Ax + A3x + 4 - prx2 /(022)
— : #,2 2
vg(x) A5cos Ax + A651n Ax + ATX + AB + p¥x</(2x2) - (4.59)
v (x) =0 ; v (x) =0
a .

The integration constants Al to AB for shape iV are:
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- 1 _ i - - 1 _ . 274
Al WAL p*L ; A, L K 251nAZl] p¥l

__l__ : . 3 . - 1 4
3 E [031nAZ+2111-AZ—¢005AZ] o*l : Ah = ?szn’p*l

=
1

e &
A_ = - LY ;A = LA
VAL P H 6= DT o] (L 60)
A = 1 [@sinAl-Al-cosAl] p*13
T (x)3
A, = = +—;~—-[9(coskZ+AZsinAZ)+¢(sinKZ—AZcosXZ)+ A212 ] o*™
8 YL 2
where g = QCOSAZl -1
(Al sinAlzcosAl. JO+AL. (AL, Alo —)
6= 1 1 121 Y
= 1
(AZlcosAZ—51nAZl)
The two conditions for the determination of Zl and 7 are the same
as those for shape III and are given in {(k.50). For the A con-
n
stants given above, the lowest rcots of these two equations, which

correspond to shape IV were found to be

AZl = 5.3]1 ; A1 = 8.54 {h.61)

Thus for shape IV, Z/Zl = 1.6 .

For the above roots the constants A, to AB become

1

A = -0.19 x 107 %%I% A, = 0.57 x 1073 Ay = k.89 x 1073p%73

A, = 0.19 x 107 3p%z4 Ag = 0.02 x 1073p% 2% A = 0.26 x 107378 Y (.60
A, = -12.16 x 10 3p%73 . Ag = 5.12 x 107 3p®7H

The remaining derivations are the same as for shape III. The

results are:
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N ol -
t 1 2 2
uy(x) = (QTO' ﬁ)x_é' f vyt +f Y2 (h-62)
o [

~
and the equation for the determination of Nt

[/ [

e EA ' 2 2
EAaT, = N + Ir -1 +{f 1+ 5= fvld.x+fv2dx (k.63)
o]

0 Zl

The integral expressions which appear in the above equations were

evaluated noting (4.59) and (4.50'). They are, noting that\l/ll = 1.6 ,
Zl Z
jf vizdx‘= 5.49 x 10““p*2117 : ./r Vizdx = 1.91 x 10 7p*277 (b.6k)
A
0 . 1
The solution for shape IV is thus obtained. The results of

the numerical evaluation is shown in Fig. 5 as dash-dot-dot-dash lines.

vmax was calculated by first forming dvl/dx = 0 which yielded x/11= 0.0
(x).

and then by substituting this value into vl

The drop of the axial force in the buckled region and the corres-

ponding values for a,ll and 7, at TO;?L, are given in Table L.

TABLE 4. CALCULATED TRACK DATA - SHAPE IV
| T T I
; Temperature Axial force Axial force Nt-Nt Zl 7
increase straight state buckled region 8 = meter fer
T in °C | N, = EAaT tons N. tons 0 ehers | meters
0 t o] t meters i
!
T = 4h1.0 131.2 88.0 L3.2 7.8 [ 12.5
, |
T = 50.0 160.0 56.3 103.7 9.7 { 1°.¢
- SRS ISP IS S



4.5 RIMARKS ON OBTAINED RESULTS

A comparison of the post-buckling equilibrium branches, and the cor-
responding axial forces, shown in Fig. 8, reveals that the results for
shape I to IV are very close, in particular with regard to the TL-value.

A graphical comparison of the stable lateral displacements v for the
115 1b/yard track at TO = 50°C is shown in Fig. 5. Tn each of the four
graphs the vertical scales the horizontal scales are the same. The shown
wave lengths* and amplitudes are of the order observed in tests and dis-
cussed in [1]. DNote, that according to the above tables the a-values are
several times larger than the corresponding Z-values.

From Fig. 5 it follows that as more lateral waves are included in the
analysis (shapes ITI and IV), the length of track affected by buckling®
210 = 2{7+a), increases noticeably. This is not the case, however, in the

actual problem. The increase of QZO in Fig. 5 is caused by neglecting the

axial ‘kesistance r, in the laterally buckled region, thus also in regicn

Z

1 < x <7 ; a practice adeopted by all investigators who determined post-
buckling equilibrium branches for shapes IIT and/or IV.

The zbove finding suggests that for shapes III, IV or higher, the
resistance r chouldbe included at least for x > Zl. The resulting for-
mulation for shape III or IV remaing the same as derived above, except

for the second differential equation in (4.39) which beccmes

[EA(EQ—&TO)]' = -r Zl

A

x <1 (k.39")

It is anticipated that the effect of this correction on TL will be

relatively small. For practical purposes the use of the

results based on shapes Iland IIlappearsto be sufficient.

I
Note that x is a lLagrange variable and that v(x) is only the lateral

component of the displacement vector. For example, the length of the
buckled region is not 27 , but 2[7 + u{l )], although for the prob-
lems under consideration u(l ) << 7 '
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5. COMPARISON WITH RESULTS OF OTHER TNVESTIGATORS

A review of the analyses of thermal track buckling in the lateral
plane was recently presented by Kerr [1]. One finding of this survey
was that only a small number of the published analyses, namely those
which toock inte account the drop of the axial force Nt in the buckled
region, are conceptually correct. However, these few analyses, although
based on the same fundamental assumptions (such as the replacement of
the track by an elastic beam in bending, and the assumption that the
axial and lateral resistances are constants) utilized different methods or
solution with an unknown effect on the accuracy of the final results.

In this section the well known analyses of Martinet [8], Mishchenko
[9], and Numata [10], which represent the different methods of solution,
are. briefly discussed and the obtained resulfs are compared with those
derived in the present paper.

Martinet [8] described the lateral response of the buckled track

region by the linear differential equation of classical beam theory

a*v ¥ alv _

Bl zw+ N, 55w = % o, (5.1)

and used, at x = 7, and 7, the same boundary conditions as derived in the

1
present paper. Since the linear differential equation for v, for example
(L.16), which was obteined from the nonlinear equations in (k.6),

is identical with eq. {(5.1), the resulting scluticns for the expressions
v are also the same. For the determination of the unknown axial force

ﬁ;, Martinet set up a separate ceompatibility equation for axial  dis-

placements at the juncture of the buckled and adjoining regions. For

ho



shapes T and Ii he obtained an expression which is identical with
eq. (4.31). For shape IIT his compatibility equation is identical
with eq. (4.57).

It is indeed ncteworthy that, althogh Martinet used, a priori,
a linear differential equation for v and derived the compatibility

equation, heuristically, not making a distinction between Euler

and Lagrange coordinates ete., he obtained results for shapes I, IT
and IIT which are the same as the corresponding results derived
in the present paper. (In this connection refer to the corresponding
questions raised by Kerr {11].) Since in the present paper the for-
mulation for the entire track was obtained in a unified and consistent
manner and the obtained solutions of the resulting nonlirear formula-
tions are exact, it may be concluded that the objections raised by
Mishchenko ([10] pp. 64-65) regarding the aceuracy of Martinet's solu-
ticn are not valid.

Mishchenko [9] and Numata [10] used different variants of the

energy apprcoach. The effect of the drop of Nt to N (for which Martinet

t
used a displacement compatibility equation) Mishchenko took into con-

sideration in the expression of the total potential energy
n=1(r,1) (5.2)

where f is an amplitude of lateral deflections and 27 is the length of
the buckled regicon, and by a displacement compatibility equation. The

equilibrium relations Mishchenko obtained from the conditions
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3l _ . el
a__ O H BZ O (5'3)

Q2

Approximating shape I by the expression *

' 2 ,
vl(x) = 0.29k « £ x (cos 54&%25 - 2.190 %§'+ Q-MOT) (5.4)

where f = vl(O), the eguilibrium equations obtained by Mishchenko are

Nt
t EIf _
27T T - 33.56 ? - 0.858 DOZ =0

(v, - ﬁ;)z E\TthZ BEIf? , 2
TR - 0.692 12' + 25,17 e 0.429 fp, =0

and the derived compatibility relation may be written ds

EAr 2

~ ~
- 2 - - L9
(Nt Nt) + 2Zro(Nt Nt) 1.384 7

1l
(@]

(5.6)

Approximating shape II by twe expressions, each valid in a 4if-

ferent region, Mishchenko obtained the eguilibrium equations

~
N f
t o EIf _ -
11.06 - 254 .4 3 1.012 pOZ. 0
~ ~ c
(m_ - )2 N, £2 2 (5.7)
1, t R EIf _
SEA - 2.764L ) + 190.8 —z;— - 0.506 pof =0
and the corresponding compatibility equation
~ . EArof2
- 2 & - - — . =
(Nt Nt) + EZrO (Nt Nt) 5.528 7 0 (5.8)

)

where f = (Vl :
max

B T6 simplify the reading and enhance comparisomns, the following equa=
tions utilize the notations of the present paper.

Lk



The above equations were evaluated numerically and the results are
shown in Fig. 9 and Fig. 10.

Numata [10], using a different variant of the energy method and
using different approximating functions for v, obtained for shapes T

to IV the following eguations

B(?Z)zpo
f_ wz{ﬁ - ﬁEiilE%ﬁEE}
Tt (21)
(5.9}
| Ny
21x = 21 oF = (p+l)/2'n
and
. )]
o / 8 pguzx(EI) 2/2
N -N, =r 2{-1+711+ = - (5.10)
t t o} v rozz I(Nt)T/2

where the coefficients n, B, and ¥ are given in Table 5.
TABLE 5. VALUES OF PARAMETERS

Buckled i

shape H 8 H
I 1 1.000 8.8857
II 2 0.2425 7.9367
III 3 0.1685 11.7867
v b 0.0977 16.3004

The above eguations weré evaluated numerically and the results are
shown in Figs. 9 through 12. For shapes I .and II the agreement between
the shown graphs is very close., However, for shapes IIT and IV the Numata
results deviate noticeably from the exact ones and yield TL values which

are about 10% higher.
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Note, however, that the above T_-value is based on the used parameters

L
and thermade assumptions. BSo, for example, a lower lateral resistance
p0 gaused by track maintenance activities will lower the TL-value,
whereas the effect of rail-tie fasteners which exhibit a torsional
resistance will increase the range of safe temperature increases.

Note also that the assumption that the lateral resistance
p=p, = const. was made in order to simplify £he analyses. In actu-
ality p is of the shape shown in Fig. 3a. Thus, although the post-
buckling equilibrium graphs shown in Fig. & indicate that the straight
state is always stable (with decreasing stability for increasing TO),
for an actual track there always.exists a temperature increase Tcr
beyond which even the perfectly straight track may buckle ([3] Fig. 5).
Also note that the assumption p(x) = pO is valid only for monotonic-
ally increasing deformations.

Anocther point to consider, is that actual tracks are not perfectly
straight, but have small geometric imperfections. With minor medifi-
cations the formulations presented above are suitable also for the
study of this problem. However, the resulting analyses are cumbersoﬁe
and are also complicated by the uncertainty of the multitude of imper-
fection shapes encountered in an actual track.

The results obtained in references [3] (p. 36) and [5] suggest,
‘however, that the effect of the relatively small lateral imperfections
encountered in an actual track will be to decrease the value of Tc
without affecting noticeably the corfesponding TL—value. This in turn

indicates the possibility that if the temperature increase in the rails

of a track could be maintained (technically and economically) such that

52



T < TL’ where TL is the value for the perfectly straight track dis-
cussed previously, then for engineering purposes there may be no need
to determine the effect of lateral track imperfections on the safe

temperature increase.



[2]

(3]
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APPENDIX:

REPORT OF INVENTIONS

After a review of the work performed under this phase
of the contract, it was determined that no technical innovation,
discovery, or invention has been made. The work involved
the development of an improved analysis for predicting the safe
temperature increase in the continucusly welded rails of =z

railroad track, in order to prevent thermal track buckling.
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6. CONCLUSIONS AND RECOMMENDATIONS

A study for the determination of the safe temperature increase
in the rails of a straight track, to prevent lateral track buckling,
was presented. The criterion used is based on the post-buckling equi-
librium branches of the track. The range of the safe temperature

increases was defined as

where TL is the smallest value of the temperature rise at which a
deformed state of equilibrium (thus, a buckled state) becomes possible.

It is shown that, contrary to the claims made in the literamure,
this problem can be formulated completely in terms of differential
equations and the corresponding mastching snd boundary conditions.

It is also shown that the obtained non-linear formulation, because
of a gpecial analytical feature of the obtained differential equations,
can be solved exactly, in closed form.

The obtained solutions for deformation shapes I to IV reveal that,
for the track par&meters used, the determined TL values are very close
to each other. From the presented comparison of results for shapes
T to IV and the following discussion 1t may be concluded that,for the deter-
mination of Ty.an analysis based on deformation shape II may be suffi-
cient for engineering purposes.

Aecording to Fig. 8, the obtained range of safe temperature increases
for a track consisting of 115 ib/yard rails which is attached to wooden

ties by means of cut-spikes is

jacd o
T0 < TL haoc
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This deviation appears to be caused by the a priori assumption of
the values for (vl)max/(vg)max and the position of (v )ma , which con-

stitutes an additional analytical constraint on the solution. For

example, whereas Numata stipulated for shape III

{v,)

1'max _ A _
V2 max e and A =2 (5.1

v
2 max

the correspondiﬁg values which result from the exact solution, derived

in the present paper, are

1 e .8

Vg)max and TZT;————-— 1.8 (5.12
Thus, according to the exact solution,the lateral displacements
"damp out" more rapidly than assumed by Numata. This feature is even
more pronounced for shape IV, as shown in Fig. 5.
Regarding the suitability of analytical methods for solving the
thermal track buckling problem, it should be noted that the claim made
by Mishchenko ([9] p. 63) and S. P. Pershin ([12] p. 42), that the dif-
ferential equation approach is not suitable for a complete analysis* of
the thermal track buckling problem, is not justified. As shown in the
present paper the differential equation approach is capable of a com-
plete determination of the post-buckling displacements and forces of the railroad
track and thus for the determination of the range of safe temperature increases
Ty < TL.
* A track buckling analysis is referred to in the literature as complete
when the drop of Nt to Nt due to buckling is taken into consideration.
As pointed out in [1], tHose numerous analyses, which do net tale inte

consideration this drop should not be considered as analyses of track
buckling caused by constrained thermal expansions.
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